
FP7-ICT-610717

Deliverable Version 1.0

Seventh Framework Programme

Call FP7-ICT-2013-10

Project Acronym: S-CASE

Grant Agreement No: 610717

Project Type: COLLABORATIVE PROJECT

Project Full Title: Scaffolding Scalable Software Services

D2.4 Mining models for SE-related associations

Nature: R
Dissemination Level: PU

Version #: 1.3
Date: 25 February 2015

WP number and Title: WP2 Automated model-driven mapping and transformation
Deliverable Leader: AUTH

Author(s): Themistoklis Diamantopoulos (AUTH)
Revision: Konstantinos Giannoutakis (CERTH), Ciro Formisano (ENG),

Andreas Symeonidis (AUTH)
Status: Submitted

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [2] of [58]

Document History

Version1 Issue Date Status2 Content and changes
0.1 10 July 2015 Draft TOC
0.2 17 July 2015 Draft Added introduction, executive summary
0.3 20 July 2015 Draft Added state-of-the-art analysis
0.4 21 July 2015 Draft Added section 3
0.5 22 July 2015 Draft Added section 4
0.6 23 July 2015 Draft Added section 5
0.7 24 July 2015 Draft Added conclusions

0.75 30 July 2015 Draft Internal review
0.8 18 August 2015 Peer-Reviewed Made corrections noted by reviews
0.9 20 August 2015 Peer-Reviewed Added caption lists noted by reviews
1.0 21 August 2015 Final Sent to Commission
1.1 5 February 2016 Revised Added comparison section on UML

diagrams (subsection 5.4)
1.2 18 February 2016 Revised Added improved literature review (section

2) and added evaluation section on UML
diagrams (subsection 5.5) and summary of
changes (subsection 1.4)

1.3 22 February 2016 Revised Internal review - Made final modifications
1.4 26 February 2016 Submitted Submitted to PO

Peer Review History3

Version Peer Review Date Reviewed By
0.75 30 July 2015 Konstantinos Giannoutakis (CERTH)
0.75 30 July 2015 Ciro Formisano (ENG)
0.9 30 July 2015 Andreas Symeonidis (AUTH)
1.2 21 February 2016 Andreas Symeonidis (AUTH)

1Please use a new number for each new version of the deliverable. Use “0.#” for Draft and Peer-Reviewed. “x.#” for
Submitted and Approved”, where x>=1.Add the date when this version was issued and list the items that have been added
or changed.

2A deliverable can be in one of these stages: Draft, Peer-Reviewed, Submitted and Approved.

3Only for deliverables that have to be peer-reviewed

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [3] of [58]

Table of Contents

DOCUMENT HISTORY .. 2

TABLE OF CONTENTS ... 3

LIST OF TABLES ... 5

LIST OF FIGURES .. 6

ABBREVIATIONS AND ACRONYMS .. 7

EXECUTIVE SUMMARY .. 8

1 INTRODUCTION ... 9

1.1 WP2 OBJECTIVES .. 9

1.2 SCOPE OF TASK 2.4 ... 9

1.3 STRUCTURE OF THIS DELIVERABLE ... 10

1.4 SUMMARY OF CHANGES .. 10

2 STATE-OF-THE-ART ANALYSIS .. 11

2.1 OVERVIEW ... 11

2.2 BACKGROUND ON MINING FUNCTIONAL REQUIREMENTS .. 11

2.3 BACKGROUND ON SOURCE CODE MINING .. 12

2.4 BACKGROUND ON MINING UML MODELS ... 13

2.5 TASK CONTRIBUTIONS AND PROGRESS BEYOND THE STATE-OF-THE-ART 14

3 MINING FUNCTIONAL REQUIREMENTS .. 17

3.1 OVERVIEW ... 17

3.2 A RECOMMENDATION SYSTEM FOR FUNCTIONAL REQUIREMENTS ... 17

3.2.1 ANNOTATING REQUIREMENTS .. 17

3.2.2 SEMANTICALLY RELATING TERMS OF REQUIREMENTS .. 18

3.2.3 EXTRACTING ASSOCIATION RULES FROM REQUIREMENTS .. 19

3.2.4 RECOMMENDING FUNCTIONAL REQUIREMENTS ... 20

3.3 EVALUATION ... 22

3.3.1 DATASET .. 22

3.3.2 AN EXAMPLE OF RECOMMENDING REQUIREMENTS .. 23

3.3.3 EXPERIMENTAL RESULTS ... 25

4 SOURCE CODE MINING .. 28

4.1 OVERVIEW ... 28

4.2 RECOMMENDING ALGORITHMS FOR RESTFUL RESOURCES ... 28

4.2.1 DOWNLOADER .. 28

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [4] of [58]

4.2.2 PARSER .. 30

4.2.3 MATCHER .. 32

4.3 CASE STUDY ... 34

4.3.1 ALGORITHM FOR WRAPPING TEXT .. 34

4.3.2 ALGORITHM FOR HIGHLIGHTING A WORD .. 35

4.3.3 ALGORITHM FOR FINDING A WORD ... 36

5 MINING UML MODELS .. 38

5.1 OVERVIEW ... 38

5.2 DETECTING SIMILAR USE CASE DIAGRAMS ... 38

5.2.1 PARSING USE CASE DIAGRAMS .. 38

5.2.2 MATCHING USE CASE DIAGRAMS ... 39

5.2.3 EXAMPLE ... 39

5.3 DETECTING SIMILAR ACTIVITY DIAGRAMS ... 41

5.3.1 PARSING ACTIVITY DIAGRAMS .. 41

5.3.2 MATCHING ACTIVITY DIAGRAMS .. 42

5.3.3 EXAMPLE ... 43

5.4 COMPARISON WITH THE CURRENT STATE-OF-THE-ART ... 44

5.4.1 ASSESSING THE MATCHING OF USE CASE DIAGRAMS .. 46

5.4.2 ASSESSING THE MATCHING OF ACTIVITY DIAGRAMS ... 48

5.5 EXPERIMENTAL EVALUATION .. 50

5.5.1 EVALUATING THE MATCHING OF USE CASE DIAGRAMS ... 51

5.5.2 EVALUATING THE MATCHING OF ACTIVITY DIAGRAMS .. 52

6 CONCLUSIONS ... 54

REFERENCES .. 55

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [5] of [58]

List of Tables

Table 3.1 Heuristics for the activated rule items of a software project 21

Table 3.2 Sample association rules extracted by the dataset .. 22

Table 3.3 Evaluation results for the recommended requirements .. 25

Table 4.1 20 first results for the query “wordWrap” ... 34

Table 4.2 20 first results for the query “highlightWord” ... 35

Table 4.3 20 first results for the query “findWord” ... 36

Table 5.1 Matching between the diagrams of Figure 5.1 and Figure 5.2 40

Table 5.2 Matching between the diagrams of Figure 5.3 and Figure 5.4 43

Table 5.3 Type instantiation of the data model shown in Figure 5.5 for Use Case diagrams . 46

Table 5.4 Matching between the diagrams of Figure 5.1 and Figure 5.2, using the FUJABA
approach ... 46

Table 5.5 Matching between the diagrams of Figure 5.1 and Figure 5.2 (modified so that
“Show Bookmark” and “Delete Bookmark” are replaced with “Retrieve Bookmark” and
“Remove Bookmark” respectively), using the S-CASE approach and the FUJABA approach .. 47

Table 5.6 Type instantiation of the data model shown in Figure 5.5 for Activity diagrams 48

Table 5.7 Matching between the diagrams of Figure 5.3 and Figure 5.4, using the FUJABA
approach ... 49

Table 5.8 Classification results of S-CASE for the Use Case diagrams of the dataset 51

Table 5.9 Classification results of FUJABA for the Use Case diagrams of the dataset 51

Table 5.10 Classification results of S-CASE for the Activity diagrams of the dataset 52

Table 5.11 Classification results of FUJABA for the Activity diagrams of the dataset 52

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [6] of [58]

List of Figures

Figure 3.1 Example depicting an annotated functional requirement 17

Figure 3.2 Annotated items of the requirement of Figure 3.1 that correspond to relations .. 18

Figure 3.3 Example fragment of WordNet depicting paths to account and profile.
record is the most specific class that describes both elements. .. 19

Figure 3.4 Functional requirements of project Restmarks .. 23

Figure 3.5 Recommended requirements of our system for project Restmarks 24

Figure 3.6 Visualization of the recommended requirements for project Restmarks including
the percentage of the recommended and the correctly recommended requirements given
their support and their confidence .. 24

Figure 3.7 Visualization of the recommended requirements including the percentage of the
correctly recommended requirements given support and confidence 26

Figure 4.1 Example query for resource named “user” and method named “sort” 28

Figure 4.2 Example model file for resource “document” .. 30

Figure 4.3 Example model properties for the resource model of Figure 4.2 31

Figure 4.4 Example extracted information for method “public String[] wordWrap(String text,
double width)” ... 31

Figure 4.5 Algorithm that computes the similarity between two sets of variables 33

Figure 5.1 Example use case diagram for project Restmarks .. 38

Figure 5.2 Example use case diagram for matching with the one of Figure 5.1 40

Figure 5.3 Example activity diagram for project Restmarks .. 41

Figure 5.4 Example activity diagram for matching with the one of Figure 5.3 43

Figure 5.5 Data model of the difference algorithm, as shown in [31] 45

Figure 5.6 Evaluation metrics for the Use Case diagrams of the dataset 52

Figure 5.7 Evaluation metrics for the Activity diagrams of the dataset 53

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [7] of [58]

Abbreviations and Acronyms

CIM Computationally Independent Model

CRUD Create, Read, Update, Delete

CSE Code Search Engine

LCS Longest Common Subsequence

MDE Model-Driven Engineering

M2M Model-to-Model

PIM Platform Independent Model

PSM Platform Specific Model

RE Requirements Engineering

RAML RESTful API Modeling Language

REST REpresentational State Transfer

RSRE Recommendation System in Requirements Engineering

RSSE Recommendation System in Software Engineering

UML Unified Modeling Language

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [8] of [58]

Executive Summary

The objectives of WP2 include the design and development of a Model-Driven Engineering
mechanism as well as the research and development of mining techniques for software
artefacts. As part of task T2.4, this deliverable comprises novel methodologies for mining
models for Software Engineering related associations.

In specific, the work on this task involves applying data mining techniques in functional
requirements, source code of RESTful web services, and UML diagrams, in order to extract
useful associations.

Concerning functional requirements, our work includes a novel recommendation system
that can recommend functional requirements in the form of semi-structured natural
language text. Using the requirements of past software projects, association rule mining
techniques and heuristics are employed to determine whether the requirements of a project
are complete and suggest new requirements.

Concerning the source code implementation of RESTful web services, this work focuses on
the task of providing examples of algorithmic resources. In specific, we present a system that
uses code search engines to retrieve algorithmic implementations and employs mining
techniques to conform to the resource models of RESTful web services.

Finally, our methodology on UML models involves reusing UML use case and activity
diagrams in order to improve the process of requirements elicitation. Upon parsing these
types of diagrams into models, we employ matching techniques in order to find similar
diagrams.

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [9] of [58]

1 Introduction

1.1 WP2 Objectives

The overall objective of WP2 is to allow the successful storing and querying of meta-
information for software artefacts as well as the transformation of this meta-information to
RESTful web services upon developer request. The most important objectives of WP2 are
summarized as follows:

1. Define the structure and constraints of the Platform Independent Model (PIM) given
the output of multimodal user requirements.

2. Define the structure and constraints of the Platform Specific Model (PSM) in order to
specify the abstract PIM design to a concrete set of technologies.

3. Design the interfaces to the S-CASE ontology to support automated storing and
retrieval of software artefacts.

4. Develop an automated CIM to PIM Model-to-Model (M2M) transformation
mechanism.

5. Develop an automated PIM to PSM M2M transformation mechanism.
6. Develop mechanisms for transforming 3rd party services into models and S-CASE

services.
7. Design and develop mining mechanisms for discovering associations between

models.

This deliverable concerns the design and development of methodologies of mining models
from software artefacts. Thus, the work described in this deliverable focuses on objective 7
of the above list.

1.2 Scope of Task 2.4

The scope of task T2.4, which is described by this deliverable, involves applying data mining
techniques in order to extract useful associations from three types of input. These types
include:

• Functional requirements in the form of semi-structures natural language text
• Source code implementations of RESTful web services
• UML use case and activity diagrams

Our work on functional requirements concerns the problem of recommending new
requirements given the requirements of past software projects. Association rule mining
techniques and heuristics are used to determine whether the requirements of a project are
complete and suggest new requirements to the user.

Concerning the source code of RESTful web services, we focus on providing examples of
algorithmic resources. Note that tasks T2.1, T2.2, and T2.3 ensure that the source code
provided to the developer as the output of the MDE engine is complete in terms of
modelling resources. In specific, the source code extracted from the engine involves a
connection to a database and a complete implementation for all CRUD resources. Therefore,
the work in this deliverable focuses on providing examples of algorithmic resources. We
present a system that uses code search engines to retrieve algorithmic implementations and
employs mining techniques to conform to the resource models of RESTful web services.

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [10] of [58]

Finally, the work on UML diagrams concerns the models that are given by the requirements
engineer/developer as part of multimodal input. Thus, the process of requirements
elicitation can benefit from reusing UML models of use case and activity diagrams. Upon
parsing these types of diagrams into models, we employ matching techniques in order to
find similar diagrams.

1.3 Structure of this Deliverable

This document is structured as follows. Section 2 describes the state-of-the-art on mining
functional requirements, source code mining, and mining UML diagrams and models. Section
3 presents the details of a system for creating a recommendation system for functional
requirements. Section 4 describes a methodology for finding useful source code fragments
for the development of algorithmic resource implementations. Section 5 describes our
methodology for reusing UML use case and activity diagrams. Finally, Section 6 summarizes
our main contributions on this task.

1.4 Summary of Changes

Following the first review of this deliverable, further work has been performed in order to
comply with the guidelines provided by the reviewing team, aiming to improve the overall
quality of the work performed as part of task T2.4. Major changes include:

- Augmenting state-of-the-art analysis on mining UML models (subsection 2.4),
focusing on representing UML models as ordered trees.

- Revision of the main contributions of this task with regard to UML models
(subsection 2.5), in order to refer to the progress made with respect to the updated
state-of-the-art section.

- Further assessment our UML mining methodology against the current state-of-the-
art, in order to illustrate the effectiveness of our approach for recommending UML
use case and activity diagrams (subsection 5.4).

- Evaluation of our UML mining methodology against the current state-of-the-art on a
UML models dataset, comprising 65 Use Case diagrams and 72 Activity diagrams, in
order to determine whether our approach can effectively detect semantically similar
UML diagrams (subsection 5.5).

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [11] of [58]

2 State-of-the-art Analysis

2.1 Overview

The area of Requirements Engineering covers the activities of discovering, defining,
analyzing, and maintaining the requirements of software projects [1]. The process of
requirements elicitation according to the needs of the stakeholders can be a particularly
challenging task, especially today that software systems have grown to be more and more
complex. Additionally, the need for proper identification of software requirements is crucial,
since reengineering costs as a result of poorly specified requirements are considerably high
[2].

In this context, several research efforts in the field of RE have focused on improving various
aspects of the requirements elicitation process. Additionally, the rise of the open source
community and the need for designing and developing large and complex software have
attracted the attention of several researchers and practitioners. The potential of utilizing the
vast available amounts of existing information of software projects in order to extract useful
recommendations for software projects is explored in several fields in order to facilitate the
reuse of software artefacts.

In the following subsections, we provide a state-of-the-art analysis for the main research
axes explored in the task of this deliverable. Subsections 2.2, 2.3, and 2.4 provide a review of
research efforts on mining functional requirements, source code, and UML models,
respectively. Finally, subsection 2.5 summarizes our main contributions indicating the
progress beyond the state-of-the-art.

2.2 Background on Mining Functional Requirements

Several researchers have proposed data mining techniques and recommendation systems
technologies in order to facilitate the process of requirements elicitation. The area of
Recommendation Systems in Requirements Engineering (RSREs) comprises systems that aim
to provide valuable information that may refer to any process and/or artefact related to
software requirements. RSREs span along various processes of RE, including project
management (i.e. decision support) and release planning [3], [4], requirements elicitation
and analysis [5]–[14], quality assurance and validation [15], [16], etc. In the following
paragraphs, we review the current literature for requirements elicitation systems and
particularly systems that are used to recommend requirements (not only stakeholders as in
[17]).

Early research efforts in RSREs for requirements elicitation were mainly involved with
domain analysis, using linguistics (vocabularies, lexicons) in order to determine the domains
of projects and possibly identify missing entities and relations at the requirements level. One
of the first systems to support this kind of analysis is the Domain Analysis and Reuse
Environment (DARE), a Computer Aided Software Engineering (CASE) tool designed and
developed by Frakes et al. [5]. DARE utilized multiple sources of information, including not
only the requirements of a project, but also its architecture and source code. Upon
extracting entities and relations from several projects, DARE used clustering techniques in
order to identify common entities and recommend similar domain artefacts and
architectural schemata for each project.

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [12] of [58]

In the same context, Kumar et al. [6] utilize ontologies that store software requirements and
possible project domains in order to improve the specifications of agile requirements.
Subsequent work by Ghaisas and Ajmeri [7] involves using ontologies to develop a
Knowledge-Assisted Ontology-Based Requirements Evolution (K-RE) method and toolset.
The authors construct a domain knowledge repository in order to facilitate the creation of
software requirements and especially resolve conflicts between change requests.

Another quite interesting line of work involves identifying the features of a system, using
possibly its requirements, and recommending new ones. Chen et al. [8] used requirements
from several software projects in order to construct requirements relationship graphs and
subsequently extract domain information using clustering techniques. In specific, their
system can identify features, such as e.g. reading from a file, and use them to create a
feature model for projects of a specific domain. In the same context, Alves et al. [9]
constructed a domain feature model, employing the vector space model and using latent
semantic analysis to find similar requirements and cluster them into domains.

Using requirements to identify features is an idea explored also by Dimitru et al. [10]. The
system described by the authors analyzes requirements of software projects using
association rule mining and groups them using clustering techniques. The groups are then
used to identify similar projects (using the k-Nearest Neighbors algorithm) and recommend
new features.

Apart from the feature recommendation techniques discussed so far, RSREs can also be used
for the non-functional characteristics of software projects. A notable research work by
Romero-Mariona et al. [11] involves creating a model for several different approaches in
security requirements engineering. Thus, the developer may define the importance of
certain characteristics for each approach, and the system returns a ranked list of the most
compliant approaches.

Finally, the relation between requirements and stakeholders has also been explored in the
context of RSREs. Lim and Finkelstein [12] introduce StakeRare as an extension to their
previous work in stakeholder identification [17]. StakeRare can be used to prioritize and
reuse requirements in a project with multiple stakeholders. Upon providing a rating for each
requirement, the system uses collaborative filtering to recommend new requirements and
prioritize requirements according to the preferences of stakeholders and their influence in
the project. A similar line of research followed by Castro-Herrera et al. [13] and Mobasher
and Cleland-Huang [14] involves employing collaborative filtering to recommend
requirements to the most relevant stakeholders.

2.3 Background on Source Code Mining

Ever since its introduction, the REST architectural style has been constantly preferred by
several developers for its simplicity and scalability, thus it has now grown to be the state-of-
the-practice for creating web services. The main building blocks of a RESTful web service are
resources. Each resource provides an object of the system that can be addressed using one
of the four CRUD operations: Create, Read, Update, and Delete. Thus, given for example a
library management system, we could have a resource “book”. The CRUD operations would
then be used to add, delete or update books to the library.

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [13] of [58]

The API of a RESTful service is usually on top of a database system. In the library
management system example, the underlying database would handle most of these simple
operations. However, sometimes the operations required by a web service may be much
more complex. For example, consider the following queries to the service:

1) Return the text of the book with id 4.
2) Return the text of the book with id 4, wrapped left.
3) Return the number of books that contain a specific word.

The first query is quite simple, requiring a GET request to return a book and its text, as long
as it exists. Queries 2 and 3, however, are much more complex. In specific, query 2 requires
not only performing some request on the data, i.e. retrieving the text of Hamlet, but also
performing some other operation on the returned text. Correspondingly, query 3 requires
searching, i.e. an operation on the data. Although query 3 requires searching the database
while query 2 requires only retrieving a specific text, both queries require some kind of
algorithm. Since in RESTful web services, any API operations including algorithms have to be
modeled as resources, algorithms are resources too. In specific, algorithms in RESTful web
services are called algorithmic resources [18].

In the context of S-CASE, and particularly WP2, the MDE module shall handle the automatic
source code generation of CRUD resources. Thus, the problem analyzed in this task is the
recommendation of source code that can be reused in the construction of algorithmic
resources. Similar systems that search for reusable code can be traced in the area of
Recommendation Systems in Software Engineering (RSSEs). In the following paragraphs, we
analyze certain code-reuse RSSEs that find example source code for the developers.

In the context of code reuse, XSnippet [20] is one of the first RSSEs to provide examples to
the developer, however its recommendations focus on the SDK of the Eclipse IDE.
PARSEWeb [21] and MAPO [22] provide recommendations based on the results of CSEs in
order to aid the developers use APIs. In specific, these two systems recommend API usages
given queries from a source to a destination object.

Code Conjurer [23] and CodeGenie [24] follow a test-driven approach to provide useful
components. The systems search for useful components in CSEs and use tests to confirm
that the functionality of the components complies with the requirements of the developer.
Although the problem of component reuse is quite similar to the scope of this work, the
components recommended by these services are mostly structured implementations of
interfaces, thus they do not comply with the characteristics of algorithms or the properties
of RESTful web services.

2.4 Background on Mining UML Models

During the latest decades, several research efforts have been directed towards the idea of
applying data mining techniques on UML models and diagrams. Most early efforts in the
field employed Information Retrieval techniques. Despite not using UML models, the work of
Alspaugh et al. [25] is largely relevant since it is among the first works in the direction of
scenario reuse. Scenarios are defined as a set of events triggered by actions of actors, while
authors and goals are also defined for them. Blok and Cybulski [26] employ the vector space
model in order to represent the flow of events for every use case. The similarity between
use cases is then computed using the cosine similarity of the vectors of events.

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [14] of [58]

Another interesting line of work involves extracting graphs from UML diagrams and
employing graph matching techniques to find similar graphs. Woo and Robinson [27], [28]
encoded UML elements of use case, sequence, and class diagrams as vertices and their
associations as edges. After that, the authors applied a graph matching algorithm to the
generated graphs. In a similar context, Park and Bae [29] convert sequence diagrams to
Message Object Order Graphs (MOOGs) where the messages are represented as nodes and
the edges denote the flow between the objects, either message flow or temporal flow.
Salami and Ahmed [30] extract the adjacency matrix of the directed graph of class diagrams,
where classes and represented as nodes and relationships as edges. The authors use an
inexact graph matching technique to find similar diagrams in order to reduce the complexity
of the problem. As part of the EU-funded project ReDSeeDS, graph matching and
information retrieval techniques are also employed to find similar use case, sequence, and
activity diagrams [34].

Although graph based methods can be quite effective for certain types of structured models,
their application to differencing UML diagrams lacks semantically, as noted also by Kelter et
al. [31], since they only employ arbitrary graph similarity metrics without actually focusing
on the construction of a descriptive model. As an alternative, several researchers have
focused on representing UML diagrams (and other types of XML structures in general) as
ordered trees [31]–[33]. Ordered trees can be quite effective for capturing the structure of
UML diagrams, while they also result in more efficient implementations than those of graph
models. The main focus of this line of work is the design of a data model that covers the
elements and the structure of UML diagrams. Upon properly defining and populating such a
data model, the problem is reduced to computing the similarity of ordered trees.

Finally, the rise of semantic web technologies during the latest decade has inspired several
researchers to use ontologies in order to detect semantically similar UML diagrams. Gomes
et al. [35] were among the first to extract terms from class diagrams and semantically match
them using WordNet [39]. Additionally, the authors demonstrated how the use of domain
specific ontologies can result in improved matching. Robles et al. [36] use an ontology for
measuring the similarity between classes and relationships in class diagrams and then
semantically relate one class diagram with another using an ontology for measuring the
semantic distance between their class names. Bonilla-Morales et al. [37] create a database
of ontology instances for use case diagrams. Each instance contains actors and use cases,
which can be searched through a query interface.

2.5 Task Contributions and Progress beyond the State-of-the-art

In this section we summarize our main contributions with regard to the current state-of-the-
art. In the following paragraphs, we indicate the shortcomings of current systems, and
illustrate how our methodology is better oriented towards the three tasks at hand: mining
and recommending functional requirements, recommending source code components for
the implementation of algorithmic resources, and finding similar UML diagrams to support
UML model reuse.

Concerning functional requirements mining, we may notice that there are several domain-
centered approaches [5]–[9]. This is not entirely unexpected since using domain knowledge
can lead to better understanding of the software project at hand. However, as noted also in

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [15] of [58]

[10], these domain analysis techniques are usually not applicable due to the lack of available
annotated requirements in a particular domain. Feature-based recommendation techniques,
either functional [10] or non-functional [11] do not face these issues, however their scope is
usually too high-level, especially for fine-grained requirements artefacts, such as functional
requirements. Finally, the scope of the stakeholder-aware techniques [12]–[14] is mostly
oriented towards the process of the requirements elicitation. In this work, we focus on
functional requirements and create a system that can provide low-level recommendations,
maintaining a semantic, yet domain-agnostic outlook.

Finding source code examples is a quite popular research area [20]–[24]. Code-reuse RSSEs
have been widely used in the latest decades. However, most systems do not comply with the
RESTful architectural styles, and thus do not fit the problem of finding algorithmic resources.
Due to its clear resource model, the RESTful paradigm has been the subject of several
services that allow automating parts of the development process, such as the MDE module
of tasks 2.1, 2.2, and 2.3. The MDE module aims on creating a skeleton and a database
schema for resources. In this deliverable we facilitate reuse in the concept of algorithmic
resources. To the best of our knowledge, there is no RSSE oriented towards providing
algorithmic resource implementations for RESTful web services. Therefore, in Section 4, we
provide a system that conforms to the special characteristics of REST and provides
algorithms in the form of class and method components.

Concerning UML diagrams, although current literature is oriented towards several
directions, there is a common methodology that involves extracting models from UML
diagrams and mining these models using a variety of methods. Graph based methods [27]–
[34] are effective for the structured models of class diagrams, however they do not conform
to the simple nature of use case and activity diagrams, since the latter have much simpler
structures. Ordered tree structures [31]–[33] provide simpler models, while at the same time
preserving the structure of UML diagrams (and other types of XML structures in general) as
ordered trees. However, given that the key aspect of all structure-based approaches is to
define a complete data model for all types of diagrams, they usually focus on the static
aspects of diagrams, omitting their dynamic characteristics. As a result, they are not
effective for representing data flows or flows of actions. Furthermore, the string similarity
methodologies of most aforementioned approaches are limited to string difference
methods, thus they are not applicable to complex scenarios with multiple sources of
diagrams. Ontology based, i.e. semantics enabled, methods [35]–[37] are proven to be quite
useful when domain knowledge is taken into account, however most of the time domain
specific information is limited. Finally, although Information Retrieval techniques [25], [26]
are not limited to domain information, their lexical approach is not effective for diagrams
that incorporate structure or flow information, such as activity diagrams.

In this work, we propose two methodologies, one for reusing use case diagrams and one for
reusing activity diagrams. Both approaches are domain agnostic in order to ensure their
broad applicability. The use case diagram matching algorithm uses distance metrics in order
to avoid the strict structural limitations of graph based algorithms, while at the same time
handling use cases as discrete nodes in contrast to Information Retrieval techniques. The
activity diagram matching algorithm represents diagrams are sequences of action flows, thus
ensuring that the dynamic features of the diagrams are kept intact, without however over-
engineering their structure using graph based methods. This algorithm actually resembles
ordered tree approaches [31]–[33], as these approaches offer a middle ground between

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [16] of [58]

unstructured and heavily structured methods, and hence are preferred by current UML
tools. As a result, we are also inclined to assess our algorithms against a state-of-the-art
ordered tree approach [31]. Finally, both diagram matching algorithms also use a semantic,
yet domain-agnostic, scheme for strings in order to provide more effective
recommendations, especially in cases where the diagrams originate from different sources
and diverse types of projects.

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [17] of [58]

3 Mining Functional Requirements

3.1 Overview

As noted in the previous Section, finding domain-specific requirements is a challenging task,
except perhaps for large organizations that are active in a specific domain and thus may
have several relevant projects in their private repositories. Thus, in this Section, we present
a methodology that can be applied to requirements of projects which are relevant to diverse
domains. In the following subsection we present an example for the annotation scheme of
task 3.1 and illustrate how the annotated requirements can be mined in order to extract
useful association rules and finally use these rules to recommend functional requirements.

3.2 A Recommendation System for Functional Requirements

3.2.1 Annotating Requirements

For the needs of annotating functional requirements, we used the annotation scheme
defined in deliverable D3.1.2 of WP3. The annotation scheme developed as part of this task
originated from an ontology that was created for storing functional requirements and
effectively representing the static view of a software project. The design of the ontology
involves the concept of an actor performing some action(s) on some object(s), including also
various properties that may act as modifiers or as elements of the actor or the object.

The annotation scheme includes four types of entities: Actor, Action, Object, and
Property. Three relations are specified among entities, including: IsActorOf declared
from Actor to Action, ActsOn defined from Action to Object or from Action to
Property, and HasProperty defined from Actor to Property or from Object to
Property or from Property to Property.

An example of an annotated functional requirement is shown in Figure 3.1.

Figure 3.1 Example depicting an annotated functional requirement

As shown in this Figure, the structure of the sentence follows the Subject-Verb-Object (SVO)
motif, thus annotating it is intuitive. In addition, using the Natural Language Processing (NLP)
parser constructed in task 3.1 (deliverables D3.1.1 and D3.1.2), the procedure of annotating
one’s project requires little effort. After annotating the functional requirements of a
software projects, the annotations can be used to construct certain rules that correspond to
relations. For the annotated requirement of Figure 3.1, the four relations (indicated with
arrows) correspond to the four items shown in Figure 3.2.

A user must be able to login to his/her account using a username and a password.
Actor Action Object Property Property

IsActorOf ActsOn HasProperty HasProperty

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [18] of [58]

user_IsActorOf_create

create_ActsOn_account

account_HasProperty_username

account_HasProperty_password

Figure 3.2 Annotated items of the requirement of Figure 3.1 that correspond to relations

The preprocessing of these items and their use for recommending requirements are
analyzed in the following subsections.

3.2.2 Semantically Relating Terms of Requirements

As already noted, our system should be able to recommend requirements given projects of
different domains. Since we do not use any domain-specific information, the semantics of
our system have to be generic enough to support relating domain-agnostic terms between
different projects. Having extracted the items for each requirement, we can identify a set of
terms for each requirement and subsequently for each project. For example, for the items
shown in Figure 3.2, we may extract the terms user, create, account, username, and
password. Thus, assume we have another project that also involves an account for each
user, yet the term used for the user account is profile. In this case, the two terms have to
be marked as semantically similar.

Marking two terms as similar requires a database of words and their semantics, as well as a
similarity measure. We use WordNet [39] as our database, and specifically interface with it
using the MIT Java Wordnet Interface (JWI) [40]. JWI supports similarity metrics between
terms using the Java Wordnet::Similarity (JWS) library4. Although the similarity between two
terms can be determined using a variety of methods [41], several of them do not employ
semantics while others that do may not be well correlated to human judgments [42]. As a
result, we decided to use the information-content measure introduced by Lin [42], since it is
universal and fits well the generic human judgment for similar terms.

According to Lin [42], the similarity between two terms (WordNet classes) 1C and 2C is
defined as:

()

() ()
0

1 2
1 2

2 log
(,)

log log
P C

sim C C
P C P C
⋅

=
+

 (3.1)

where 0C is the most specific class that contains both 1C and 2C . For example given account
and profile, the most specific class that describes both terms is record. This example is also
visualized in Figure 3.3.

4 JWS, which is available at http://users.sussex.ac.uk/~drh21/, is based on the Perl module for WordNet
similarity metrics [41].

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [19] of [58]

Figure 3.3 Example fragment of WordNet depicting paths to account and profile. record is the most

specific class that describes both elements.

Upon having found 0C , the (maximum) value of equation (3.1) can be computed using the
information content of each WordNet class. For each class, its information content is
determined as the logarithm of the probability that a word in the corpus belongs to this
class5. For example, for record, account, and profile these values are 7.874 , 7.874 ,
and 11.766 respectively, thus the similarity between account and profile is

()2 7.874 7.874 11.766 0.802⋅ + = .

Finally, in the context of our RSRE, we first extract all terms and then we employ the
aforementioned semantics before adding an item to any itemset (i.e. a set of items). In
specific, we assume two terms have similar meaning if their similarity is more than a
threshold t . This ensures that any semantic relations between the terms are taken into
account, both when training the system and later on when using it for recommendations.

3.2.3 Extracting Association Rules from Requirements

Upon having extracted the annotations of several software projects, we now have a dataset
consisting of one set of items, i.e. one itemset, per software project. In this subsection, we
illustrate how we can extract useful association rules from these items using association rule
learning [43]. Let { }1 2, , , mP p p p=  be the set of m software projects and { }1 2, , , nI i i i=  be

5 For the information content of each class, we use the precomputed information content files of the Perl
module for WordNet similarity metrics [41], available at http://www.d.umn.edu/~tpederse/.

entity

abstraction

communication

indication

evidence

record

account history

biography

profile

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [20] of [58]

the set of all n items. The support of an itemset X is defined as the number of projects in
which all items of the itemset appear in:

 { }() | ,i i iX p X p p Pσ = ⊂ ∈ (3.2)

An association rule is expressed in the form X Y→ , where X and Y are disjoint itemsets.
For example, an association rule that can be extracted from the items shown in Figure 3.2 is
{account_HasProperty_username}→ {account_HasProperty_password}.

The strength of each association rule is determined by its support and its confidence. Given a
rule X Y→ , its support indicates the number of projects for which the rule is applicable, and
it is given as:

()

()
X Y

X Y
D

σ
σ

∪
→ = (3.3)

The confidence of the rule indicates how frequently items in Y appear in X , and it is given
as:

()
()

()
X Y

c X Y
X

σ
σ

∪
→ = (3.4)

Thus, the aim of association rule learning is to extract the association rules of the dataset
that have support and confidence values above certain thresholds. We use the Apriori
algorithm for this task [43], since it is quite effective in finding rules requiring also relatively
few computations.

3.2.4 Recommending Functional Requirements

Upon extracting the association rules, in this subsection we indicate how they can be used to
recommend new requirements for a software project. At first, given the newly added
software project, we create a new itemset p following the procedure defined in the
previous subsection. After that, given this itemset and the set of rules, we can extract the set
of activated rules R . A rule X Y→ is activated in project itemset p if all items in X are
contained in p (i.e. X p⊂).

Given the set of activated rules R , the next step is to transform them to rules containing
single items as antecedents and consequents. This rule flattening procedure creates a rule
for each combination of the antecedents and the consequents of the rule. For example,
given the rule X Y→ where the two itemsets X and Y contain the items { }1 2 3, ,i i i and

{ }4 5,i i respectively, the new flattened rules are { }1 4,i i , { }1 5,i i , { }2 4,i i , { }2 5,i i , { }3 4,i i , and

{ }3 5,i i . We also propagate the support and confidence values of the original rules to these
new flattened rules, so that they can be later used as criteria for the importance for each
rule.

Our system receives as inputs the itemset of a project p and the flattened activated rules
and outputs new requirements, using the heuristics shown in Table 3.1.

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [21] of [58]

Table 3.1 Heuristics for the activated rule items of a software project

Antecedent Consequent Conditions Result

[1, 1]Actor Action [2, 2]Actor Action 2Actor p∈ [2, 2,],
: [1, 1,]

Actor Action Object
Object p Actor Action Object∀ ∈

[1, 1]Action Object [2, 2]Actor Action 2Actor p∈ [2, 2, 1]Actor Action Object

[1, 1]Actor Action [2, 2]Action Object 2Object p∈ [1, 2, 2]Actor Action Object

[1, 1]Action Object [2, 2]Action Object 2Object p∈ [, 2, 2],
c :[, 1, 1]

Actor Action Object
A tor p Actor Action Object∀ ∈

* (except for the
above)

[2, 2]Action Object 2Object p∈ [, 2, 2],
c , : [, , 2]

Actor Action Object
A tor Action p Actor Action Object∀ ∈

* [2,Pr 2]Any operty 2Any p∈ [2,Pr 2]Any operty

As shown in this Table, there are three types of heuristics corresponding to three different
consequents. For the consequent [2, 2]Actor Action , corresponding to an
Actor2_IsActorOf_Action2 item, we create a new requirement which includes the
actor and the action of the consequent as well as an Object , which is determined by the
antecedent. For example, given an antecedent [,]create bookmark and a consequent
[,]user edit , the system recommends a new requirement [, ,]user edit bookmark .

Concerning the consequent [2, 2]Action Object , which corresponds to an
Action2_ActsOn_Object2 item, we create a new requirement which includes the
action and the object of the consequent while the actor is determined by the antecedent.
For example, given an antecedent [,]user profile and a consequent [,]create profile , the
system recommends a new requirement [, ,]user create profile . Finally, any consequent
corresponding to HasProperty (with any antecedent) leads to a new requirements of the
form [,Pr]Any operty . An example of such a requirement is [,]user profile .

Finally, note that although natural language generation deviates from the scope of this work,
the semi-structured form of functional requirements allows providing them to the user in a
comprehensible pseudo-natural language format. Hence, the recommended requirements of
our system are given in the form of sentences. This is accomplished using the following
template sentences:

1) The Actor must be able to Action Object .
2) The Any must have Property .

Although the usage of these templates does not ensure that the syntax of the new
requirement is totally correct, they are useful for presenting the requirements to the user in
a comprehensible format, so that he/she can later rephrase them and add them to the
requirements of his/her project.

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [22] of [58]

3.3 Evaluation

3.3.1 Dataset

Since an important part of our hypothesis involves the notion of creating a generic RSRE, we
used a very diverse dataset to evaluate our methodology. Our dataset consists of 30
projects, including student projects6, pilot requirements (Giftcase), as well as the RESTAPPS
[44] (Restmarks, Restmaps). In total, there are 30 projects with 514 requirements (i.e.
approximately 17 requirements per project). Upon annotating, we have a dataset of 7234
entities and 6626 relations among them. After the preprocessing step of subsection (where
the threshold for two similar terms is set to 0.5), we end up with 1512 items for all 30
projects, 1162 of which are distinct.

As one may notice, generating the set of all possible association rules is computationally
prohibitive. Using, however, the Apriori algorithm we are able to find a set of the most
useful rules (determined by support and confidence) in a few seconds. The minimum
support of the rules was set to 0.1, indicating that any rule contained in at least 10% of the
projects (i.e. 3 projects) is interesting. The minimum confidence was set to 0.5, indicating
that the rule must be confirmed at least half of the time that its antecedents are found. The
execution resulted in 1372 association rules. A fragment of them is shown in Table 3.2.

Table 3.2 Sample association rules extracted by the dataset

Association Rule Support Confidence

[,] [,]provide product system provide→ 0.167 1.0

[,] [,]system validate user login→ 0.1 1.0

[,] [,]user buy system provide→ 0.1 1.0

[,] [,]administrator add administrator delete→ 0.167 0.833

[,] [,]user logout user login→ 0.167 0.833

[,] [,]user add user delete→ 0.133 0.8

[,] [,]user access user view→ 0.1 0.75

[,] [,]edit product add product→ 0.1 0.75

[,] [,]administrator delete administrator add→ 0.167 0.714

[,] [,]user contact user search→ 0.133 0.5

6 Mainly from a software development course organized jointly by several European universities, available at
http://www.fer.unizg.hr/rasip/dsd

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [23] of [58]

As shown in Table 3.2, several of these rules are quite rational. For example, the first rule
indicates that if a product were to be provided, then it would be provided by the system. An
example of two actions of which one implies the other is the fifth rule; if a user may log out
of a system, he/she would probably also have to log in first. Finally, note that several rules
may be bidirectional. For instance, if the administrator is able to add an object, then he/she
could probably delete it (fourth rule), and vice versa (ninth rule). In the following subsection
we illustrate how the association rules are used to recommend new requirements for a
software project.

3.3.2 An Example of Recommending Requirements

In this subsection, we provide an example of recommending new requirements for a
software project. We use project Restmarks as our example. Restmarks is a service that
allows users to store their bookmarks online, and effectively share them with the community
and search for bookmarks using tags. Thus, Restmarks can be seen as a social service for
bookmarks. The functional requirements of Restmarks are shown in Figure 3.4.

A user must be able to create a user account by providing a username and a password.

A user must be able to login to his/her account by providing his username and password.

A user that is logged in to his/her account must be able to update his/her password.

A logged in user must be able to add a new bookmark to his/her account.

A logged in user must be able to retrieve any bookmark from his/her account.

A logged in user must be able to delete any bookmark from his/her account.

A logged in user must be able to update any bookmark from his/her account.

A logged in user must be able to mark his/her bookmarks as public or private.

A logged in user must be able to add tags to his/her bookmarks.

Any user must be able to retrieve the public bookmarks of any community user.

Any user must be able to search by tag the public bookmarks of a specific RESTMARKS’s user.

Any user must be able to search by tag the public bookmarks of all RESTMARKS users.

A logged in user must be able to search by tag his/her private bookmarks as well.

Figure 3.4 Functional requirements of project Restmarks

At first, our methodology for creating association rules is applied to the 29 projects of our
dataset (excluding Restmarks). After that, the rules that are activated by the annotated
requirements of Restmarks are isolated and presented to the user along with the
corresponding support and confidence values. Using the heuristics of Table 3.1, the
recommended requirements for Restmarks are shown in Figure 3.5.

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [24] of [58]

+ The user must be able to edit bookmark. (0.138, 1.0)cσ = =

+ The user must be able to view bookmark. (0.103, 1.0)cσ = =

+ The user must be able to view account. (0.103, 1.0)cσ = =

+ The user must be able to edit tag. (0.103, 1.0)cσ = =

+ The user must be able to edit account. (0.103, 1.0)cσ = =

+ The user must be able to logout account. (0.172, 0.62)cσ = =

– The user must be able to contact account. (0.172, 0.62)cσ = =

– The user must be able to contact bookmark. (0.138, 0.5)cσ = =

– The user must be able to stop account. (0.138, 0.5)cσ = =

+/–: Correctly/Incorrectly Recommended Requirement
σ: Support, c: Confidence

Figure 3.5 Recommended requirements of our system for project Restmarks

As shown in this Figure, several of these requirements are actually quite rational. For
example, the ability of the user to edit his/her tags (e.g. rename a tag) or log out of his/her
account certainly seem to have been omitted by the engineers/stakeholders that originally
wrote the functional requirements of Restmarks.

Finally, an interesting correlation can be observed between the quality of recommended
requirements and the support and confidence values of the rules that they were derived
from. Figure 3.6 visualizes the number of recommended requirements for each combination
of support and confidence value, as well as the percentage of correctly recommended
requirements for these combinations.

Figure 3.6 Visualization of the recommended requirements for project Restmarks including the percentage of

the recommended and the correctly recommended requirements given their support and their confidence

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [25] of [58]

As we can see in this Figure, most recommended requirements have high confidence values.
Furthermore, requirements with high confidence and high support seem to be correctly
recommended for Restmarks.

3.3.3 Experimental Results

In this subsection, we use a cross-validation scheme in order to further evaluate our method
and explore the influence of support and confidence on the quality of the recommended
requirements. At first, the dataset of subsection 3.3.1 is randomly split into 6 folds, such that
each of them has 5 projects. For each of the 6 folds, we remove the 5 projects of the fold
from the dataset, we extract the association rules from the remaining 25 projects, and finally
our system recommends new requirements for the 5 removed projects.

Upon having the recommendations for each project, we examined the requirements and
determined whether each recommended requirement is sensible. Note that the main scope
of our evaluation is to determine whether the recommendations add some sensible
functionality to the system under development. Hence, the developer could regard a
recommendation as useful, yet decide not to add it to the final set of requirements. The
decision to add a new requirement to a project may depend on several factors, including
stakeholder preferences, required manpower to meet the requirement, etc.

The accumulated results of our analysis for all folds are shown in Table 3.3.

Table 3.3 Evaluation results for the recommended requirements

Support Confidence # Correctly
Recommended
Requirements

Recommended
Requirements

% Correctly
Recommended
Requirements

0.2 1.0 1 2 50.0%

0.133 1.0 23 37 62.16%

0.1 1.0 43 76 56.58%

0.133 0.8 2 4 50.0%

0.2 0.75 0 1 0.0%

0.1 0.75 64 92 69.57%

0.167 0.71 0 1 0.0%

0.133 0.67 13 14 92.86%

0.167 0.62 1 1 100.0%

0.1 0.6 9 17 52.94%

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [26] of [58]

0.133 0.57 4 7 57.14%

0.167 0.56 4 5 80.0%

0.1 0.5 13 40 32.5%

Total 177 297 59.6%

As shown in this Table, our system recommended 297 requirements in total, out of which
177 were recommended correctly. The results are actually quite satisfactory since almost
60% of the recommendations can lead to useful requirements that may be otherwise
omitted. This, in the case of a single project, the requirements engineer would be presented
with a set of 10 requirements on average, out of which he/she would select 6 to add to the
project.

Note, however, that the number of recommended requirements per project depends on the
number of the already existing requirements of the project (and possibly also their size, in
the sense of the number of entities). This is quite expected, given the heuristics of Table 3.1
are largely based on the entities and relations of the project at hand. That is of course a
desired feature, since it allows making project-centric recommendations, such as the ones of
Figure 3.5.

The effect of the support and the confidence of the rules on the quality of the final
recommendations is further explored by visualizing the recommended requirements in
Figure 3.7.

Figure 3.7 Visualization of the recommended requirements including the percentage of the correctly

recommended requirements given support and confidence

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [27] of [58]

The size of each circle indicates the number of recommended (in red color) and correctly
recommended requirements (in blue color) for each combination of values of support and
confidence. At first, we may note that most recommended requirements are extracted from
rules with low support. This is actually expected since our dataset is largely domain-agnostic.
However, note that low support rules do not necessarily result in low quality
recommendations, as long as confidence values are large enough.

The confidence of the rules is highly correlated with the quality of the recommendations.
Indicatively, 2 out of 3 recommendations extracted from rules with confidence equal to 0.5
may not be useful. However, setting the value of confidence to 0.75 ensures that more than
2 out of 3 recommended requirements can be added to the project. Rules with high support
and high confidence values also lead to useful recommendations, however these rules may
be limited.

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [28] of [58]

4 Source Code Mining

4.1 Overview

In this Section, we provide an overview of an algorithm recommender that can be used for
RESTful web services. Our system consists of three components, a downloader, a parser, and
a matcher. The downloader handles the retrieval of source code from online repositories,
and the parser extracts useful information from the downloaded files. After that, the
matcher can be used to rank the files according to their compliance to the RESTful resource.
These three components of our system are described in detail in subsection 4.2, while
subsection 4.3 illustrates the applicability of our system in a case study.

4.2 Recommending algorithms for RESTful resources

4.2.1 Downloader

The downloader component uses AGORA, a CSE that allows syntax-aware queries, to
retrieve useful results for the algorithm that is given as a query7. AGORA offers a powerful
API, enabling developers to use complex queries to return relevant results. In our work
AGORA is employed as a useful input resource for source code implementations.

The query for an algorithm requires two inputs: the name of the resource and the method
name of the algorithm. For instance, given a resource “document”, where its model may
have the properties “id”, “title” and “text”, the developer may require an algorithm
“wordWrap” that would wrap the text of the document. The structure of this query is shown
in Figure 4.1.

{
 "query": {
 "bool": {
 "must": [{
 "bool": {
 "should": [{
 "match": {
 "code.class.name": "wordWrap"
 }
 },
 {
 "nested": {
 "path": "code.class.methods",
 "query": {
 "match": {

Figure 4.1 Example query for resource named “user” and method named “sort”

7 The reader is referred to deliverable 5.1 of S-CASE for more information about AGORA.

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [29] of [58]

 "code.class.methods.name": "wordWrap"
 }
 }
 }
 }]
 }
 },
 {
 "bool": {
 "should": [{
 "nested": {
 "path": "code.class.variables",
 "query": {
 "match": {
 "code.class.variables.name": "document"
 }
 }
 }
 },
 {
 "nested": {
 "path": "code.class.methods",
 "query": {
 "match": {
 "code.class.methods.name": "document"
 }
 }
 }
 },
 {
 "nested": {
 "path": "code.class.methods.parameters",
 "query": {
 "match": {
 "code.class.methods.parameters.name": "document"
 }
 }
 }
 }]
 }
 }]
 }
 }
}

Figure 4.1 (continued)

The query is a boolean query consisting of two subqueries. Since it is a must type of query,
both subqueries have to be matched. The first subquery refers to the algorithmic resource
that is searched. As shown in Figure 4.1, the algorithmic resource part is considered match if

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [30] of [58]

either the class name or a method name (or both) of the returned file is equal to the
resource. For the RESTful resource part of the query, the name of the resource has to be
matched in one or more of the following: the name of a variable of the file, the name of a
method of the file, or the name of a parameter of a method.

Upon executing the query on AGORA, the results of the query are downloaded. These results
comply with the resource name and algorithm name that were given by the user, however
they may not comply with the properties of the resource, and the methods may not provide
useful algorithms. The next subsections indicate how these results are parsed and matched
to extract the useful method implementations.

4.2.2 Parser

The parser component is used for two different purposes. At first, it is used to form the
query of the user and extract useful resource properties for matching. This is accomplished
by parsing a model file of the RESTful web service. An example RESTful resource model file is
shown in Figure 4.2.

...
XmlRootElement
@Entity
@Table(name = "document")
public class DocumentModel {

 @Id
 @GeneratedValue
 @Column(name = "documentId")
 private int documentId;

 @Column(name = "documentTitle")
 private String documentTitle;

 @Column(name = "documentText")
 private String documentText;
...

 public void setDocumentId(int documentId) {
 this.documentId = documentId;
 }

 public int getDocumentId() {
 return this.documentId;
 }
...
}

Figure 4.2 Example model file for resource “document”

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [31] of [58]

As shown in this Figure, the model file includes the properties of the resource as columns
(i.e. using the “Column” annotation), as well as setters and getters for these properties. In
our case, the useful information to be parsed is the names and types of the properties. Thus,
our specialized parser receives a model file such as the one of Figure 4.2 and extracts the
name of the resource, the types of the properties, and the names of the properties in JSON
format, shown in Figure 4.3.

{
 "name": "document",
 "variables": [{
 "name": "documentId",
 "type": "int"
 },
 {
 "name": "documentTitle",
 "type": "String"
 },
 {
 "name": "documentText",
 "type": "String"
 }],
}

Figure 4.3 Example model properties for the resource model of Figure 4.2

In the case of result files, we focus on method implementations since they are better suited
for simple algorithms. In specific, we assume each method of the result files represents an
algorithm that may suit the user. Hence, our parser extracts the methods of each class file.
The excerpt for each method is given in JSON format in Figure 4.4.

{
 "body": "...",
 "bodyvariables": [{
 "name": "result",
 "type": "String[]"
 },
 {
 "name": "line",
 "type": "int"
 },
 ...
],
 "name": "wordWrap",
 "returntype": "String[]",
 "modifiers": ["public"],
 "throws": [],

Figure 4.4 Example extracted information for method “public String[] wordWrap(String text, double width)”

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [32] of [58]

 "parameters": [{
 "name": "text",
 "type": "String"
 },
 {
 "name": "width",
 "type": "double"
 }]
}

Figure 4.4 (continued)

The extracted information for each method includes its name, its return type, any modifiers
and thrown exceptions, as well as name and type of each of its parameters. Additionally, the
body of the method is saved as a string value in the JSON representation. Although the body
of the method contains quite useful information, using it as is to match result methods to
desired algorithms is not straightforward. In our system, we parse the method body and
extract all its statements. After that, the variable declaration and variable
assignment/instantiation statements are parsed so that the variable names and types of the
method are extracted. Although this representation may seem simplistic, it is actually quite
reasonable, since most algorithms may use several properties of objects that are not
however given as parameters. For instance, in the case of a “document” with “id”, “title” and
“text”, a “wordWrap” method may receive as parameter a document object, and then use
the text variable only in the body implementation.

4.2.3 Matcher

Upon having extracted the properties of the resource and the structural information from
the result files, the matcher component is used to rank the results according to their
compliance to the query. This is accomplished by assigning a similarity value to each result
file. For this purpose, we have created a similarity scheme between the properties and a
method. The similarity scheme performs a 1-1 matching between the properties of the
resource and the parameters and variables of the method.

Thus, we can define the problem as a matching problem between two objects A and B .
Object A has name equal to the resource name and its variables are the properties of the
resource. Object B has name equal to a method name, and its variables is the union of the
parameters of the method and the variables that are defined in the method. Given these
two objects A and B , we define their similarity as:

 () () (), , ,A B
name A BS A B c StringSimilarity name name VariableSimilarity V V= ⋅ + (4.1)

The first term refers to the string similarity between the names of the objects. Since Java
naming conventions include camelCase, the two strings are initially split according to
camelCase and underscores, and then the two sets of strings are compared. The function
StringSimilarity returns the size of the union of these two sets divided by the maximum of
the sizes of the sets. For instance, given strings “addBookmark” and “createBookmark”, their
derived sets are {“add”, “bookmark”} and {“create”, “bookmark”}, thus their string similarity

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [33] of [58]

is 1/2 = 0.5. Finally, namec is a weighting parameter indicating the importance that the two
objects have similar names.

VariableSimilarity refers to the best possible matching between the variables of the two
objects, AV and BV . Two variables u and v , corresponding to the objects AV and BV
respectively, are matched using the function:

 () () () (), , if , 0
,

0 otherwise
vname vtypec ns u v c ts u v ns u v

score u v
 ⋅ + ⋅ >

= 


 (4.2)

where

() ()
() ()

, ,

, ,

u v

u v

ns u v StringSimilarity name name

ts u v StringSimilarity type type

=

=

and vnamec and vtypec are weighting parameters indicating the importance of similar names

and types of the variables, respectively. Thus, given two sets of variables AV and BV , the
function VariableSimilarity finds the best possible matching according to the algorithm of
Figure 4.5.

(),A BVariableSimilarity V V

 {}AMatchedV =

 {}BMatchedV =

 {}MatchedPairs =

 {(, , (,)) , }A BPairs u v score u v u V v V= ∀ ∈ ∈

 Sort Pairs according to the highest score
 0TotalScore =

 for each (, , (,))u v score u v Pairs∈ :

 if Au MatchedV∉ and Bv MatchedV∉

 {(, , (,))}MatchedPairs MatchedPairs u v score u v= ∪

 (,)TotalScore TotalScore score u v= +

 return TotalScore

Figure 4.5 Algorithm that computes the similarity between two sets of variables

The algorithm receives the sets AV and BV as input and outputs the TotalScore , i.e. the score
of the best matching between the sets. At first, two sets are defined, AMatchedV and

BMatchedV , to keep track of the matched variables of the two objects. After that, all possible
scores for the combinations of the variables of the two methods are computed and stored in
the Pairs set in the form (, , (,))u v score u v , where u and v are variables of objects A and B
respectively. The Pairs set is sorted in descending order, and then the algorithm iterates

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [34] of [58]

over each pair of the set. For each pair, if neither of the variables is already present in the
AMatchedV and BMatchedV sets, then the pair is matched, added to the MatchedPairs set,

and the TotalScore is incremented by the score of the pair.

Finally, for each result file the method with the maximum score is presented to the user as a
candidate algorithm. Additionally, all scores are normalized in the range [0,1] by dividing
them with the maximum score, i.e. the score (),S A A . The parameters namec , vnamec , and

vtypec can be set by the user. In our analysis, we set the parameters to values 4, 1, and 0:5
respectively.

4.3 Case Study

In this section, we provide a case study for a resource and possible algorithms for the given
resource. We use the resource “document” with an “id”, a “title”, and a “text”. In the
following subsections we present the results of different algorithmic queries that could be
useful for this resource.

4.3.1 Algorithm for Wrapping Text

One of the most useful text algorithms involves wrapping words to enhance the
presentation of the text. In the context of our analysis, we use the algorithmic resource
“wordWrap” and apply the methodology of the previous Section. The results for this
algorithm are shown in Table 4.1.

Table 4.1 20 first results for the query “wordWrap”

Method Score Relevant

1 mxUtils.wordWrap 0.588 Yes

2 GroovyTemplateEngine.wrap 0.412 No

3 HtmlDomParserContext.wrapDocument 0.353 No

- HtmlDomParserContext.wrapDocument 0.353 No

- Impl.wrap 0.353 No

4 XmlDomParserContext.wrapDocument 0.294 No

- XmlDomParserContext.wrapDocument 0.294 No

- GoHyperlinkDetector.findWord 0.294 No

- YamlHyperlinkDetector.findWord 0.294 No

- XmlHyperlinkDetector.findWord 0.294 No

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [35] of [58]

- StringHyperlinkDetector.findWord 0.294 No

- PyDoubleClickStrategy.selectWord 0.294 No

- RPrintUtilities.printDocumentWordWrap 0.294 Yes

- PythonWordFinder.findWord 0.294 No

- WordFinder.findWord 0.294 No

- WordFinder.findWord 0.294 No

5 LagartoParser.textWrap 0.275 Yes

- XmlDocument.wrapJavaDocument 0.275 No

- XmlDocument.wrapJavaDocument 0.275 No

6 OOXMLParserTest.testWord 0.235 No

Upon examining the results, we can see that 3 of them are highly relevant to the original
query, while at the same time offering algorithmic implementations of value to the user. In
this case, the ranking is also quite effective, given that the first result, i.e. the one with the
highest score, is relevant. Notably, the other two relevant results are in the positions 4 and
5, however there are several results in the same positions.

4.3.2 Algorithm for Highlighting a Word

Another common algorithm for a document would be to highlight a word. The query
involves the algorithmic resource “highlightWord”. The results are shown in Table 4.2.

Table 4.2 20 first results for the query “highlightWord”

Method Score Relevant

1 HighlighterTest.highlightField 0.353 No

- AnalyzingInfixSuggester.highlight 0.353 Yes

- mxUtils.wordWrap 0.353 No

2 UIPrefsAccessor.highlightSelectedWord 0.314 No

3 BaseWebInspector.refresh 0.294 No

- DOM.highlightNode 0.294 No

- ReadTask.doLogic 0.294 No

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [36] of [58]

- GoHyperlinkDetector.findWord 0.294 No

- YamlHyperlinkDetector.findWord 0.294 No

- XmlHyperlinkDetector.findWord 0.294 No

- StringHyperlinkDetector.findWord 0.294 No

- PyDoubleClickStrategy.selectWord 0.294 No

- PythonWordFinder.findWord 0.294 No

- WordFinder.findWord 0.294 No

- WordFinder.findWord 0.294 No

4 OOXMLParserTest.testWord 0.235 No

- WebView.handleQueuedTouchEventData 0.235 No

- WebView.handleQueuedTouchEventData 0.235 No

- WebViewClassic.getMaxTextScrollX 0.235 No

- VocabCreator.validWord 0.235 No

As in the previous query, the first relevant results is also ranked in the first position. In this
case, however, we can see that there are not a lot of relevant results. This is due to the
naming of the method; usually most algorithms would highlight a word, instead they would
find a word in some text and then highlight the relevant fragments. Our methodology,
however, managed to provide some implications as to the query. Given the results of Table
4.2, one may notice that several of them refer to functions for finding a word. In the
following subsection, we examine the relevant query for word finding.

4.3.3 Algorithm for Finding a Word

Searching inside a document to find whether some word exists, or also its position, is also
one of the most usual algorithms. The query includes the term “findWord”. The results are
shown in Table 4.3.

Table 4.3 20 first results for the query “findWord”

Method Score Relevant

1 GoHyperlinkDetector.findWord 0.529 Yes

- YamlHyperlinkDetector.findWord 0.529 Yes

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [37] of [58]

- XmlHyperlinkDetector.findWord 0.529 Yes

- StringHyperlinkDetector.findWord 0.529 Yes

- WordFinder.findWord 0.529 No

- PythonWordFinder.findWord 0.529 Yes

- WordFinder.findWord 0.529 Yes

2 mxUtils.wordWrap 0.353 No

- DependencyTree.findDependency 0.353 No

- Cluster.find 0.353 No

3 SamlModel.findProtocolSignatureElement 0.333 No

4 DataKeeperServiceImpl.findDocumentByDocumentId 0.329 No

- DataKeeperServiceImpl.findDocumentByDocumentId 0.329 No

5 InputHandler.actionPerformed 0.314 No

6 RewriteCustomTheme.findCustomThemeSheet 0.294 No

- MongoCollection.findOne 0.294 No

- MongoDBClient.find 0.294 No

- StdCouchDbConnector.find 0.294 No

- SLD3DParser.findElements 0.294 No

- InlineLocalVariableActionHandler.findUsage 0.294 No

In this case, most of the results at the top of the list are indeed relevant. Note also that these
results have rankings more than 0.5, indicating high similarity with the properties of the
“document” resource.

As a concluding remark, our methodology seems effective for finding example algorithmic
implementations. Furthermore, the algorithms conform to the model of the RESTful
resource.

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [38] of [58]

5 Mining UML Models

5.1 Overview

In this Section we present the procedure of parsing use case diagrams and activity diagrams
into models as well as a matching scheme to find similar use case and activity diagrams. By
examining similar diagrams, the requirements engineer can get useful ideas regarding the
models of his/her project. In subsection 5.2 we describe our methodology for finding similar
use case diagrams, while in subsection 5.3 we show how similar activity diagrams are found
by our system. Both subsections include examples of matching diagrams.

5.2 Detecting Similar Use Case Diagrams

5.2.1 Parsing Use Case Diagrams

UML Use case diagrams have two types of elements: actors and use cases. Additionally, they
have certain associations, including “extend” and “include” between use cases,
“generalization” between actors, and relations between actors and use cases. An example
use case diagram of project Restmarks is shown in Figure 5.1.

Figure 5.1 Example use case diagram for project Restmarks

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [39] of [58]

The use case diagram of the above Figure contains 10 use cases and 3 actors. We created a
parser in order to effectively read the XMI files of use case diagrams into a model. Our
system supports the XMI format of the Papyrus UML tool [46].

Since use cases refer to static information, our model is mostly flat. In specific, it contains
the actors and the use cases of the diagram. Thus, for the example of Figure 5.1 the model
consists of two sets, the set of actors {User, Registered User, Guest User}
and the set of use cases {Add Bookmark, Update Bookmark, Update
Account, Show Bookmark, Search by Tag, Add Tag, Login to
Account, Delete Bookmark}.

5.2.2 Matching Use Case Diagrams

Upon having parsed the use case diagrams, in this subsection we present a matching scheme
for finding similar diagrams. Given two diagrams 1D and 2D , the matching scheme involves
two sets for each diagram, one set for the actors 1A and 2A respectively, and one for the use
cases 1UC and 2UC respectively. The similarity between two diagrams is given as follows:

 () () () ()1 2 1 2 1 2, , 1 ,s D D s A A s UC UCα α= ⋅ + − ⋅ (5.1)

where s denotes the similarity between two sets and α is a parameter that denotes the
importance of the similarity of the actors in the diagram. In our case, we set α to the
proportion of the actors divided by the use cases of the queried diagram. Given e.g. a
diagram with 3 actors and 10 use cases, α is set to 0.3.

The similarity between two actors or between two use cases is given by the combination
between all the matched elements with the highest score. Thus for example, given two sets
{ }, ,user administrator guest and { },administrator user , the best possible combination is

{ }(,),(,),(,)user user administrator administrator guest null . The matching in this case would
return a score of 2/3, i.e. 0.66. The similarity between two strings is given using the semantic
measure defined in paragraph 3.2.2. In specific, given two strings 1S and 2S , we first split
each string into tokens, i.e. 1 1 2() { , }tokens S t t= and 2 3 4() { , }tokens S t t= and then find the best
possible combination of tokens, i.e. the one with the maximum token scores. After that, the
scores for all tokens are averaged to provide a similarity score for the two strings in the
range [0, 1]. For example, given the strings "Get bookmark" and "Retrieve bookmarks", the
best combination is (“get”, “retrieve”) and (“bookmark”, “bookmarks”). The semantic
similarity between “get” and “retrieve” according to the scheme of paragraph 3.2.2 is 0.677.
The similarity of “bookmark” with “bookmarks” is 1.0. Thus the final similarity between the
two strings is the average between these two scores, i.e. (0.677 + 1) / 2 = 0.8385.

5.2.3 Example

In this subsection we provide an example output of our system for two use case diagrams.
Note that given a database of use case diagrams, one could use our system to find similar
ones in order possibly to reuse some elements and get examples or useful ideas. In this
example, we assume that the user would have searched for similar diagrams and then our
system would return the matching information about the top diagram(s). For this example,
we depict the matching between the diagram of Figure 5.1 and the diagram of Figure 5.2.

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [40] of [58]

Figure 5.2 Example use case diagram for matching with the one of Figure 5.1

The matching score between the two diagrams is 0.692. Our system also returns the
matching between the two diagrams, shown in Table I.

Table 5.1 Matching between the diagrams of Figure 5.1 and Figure 5.2

Diagram 1 Diagram 2 Score

User User 1.00

Registered User Registered User 1.00

Guest User null 0.00

Delete Bookmark Delete Bookmark 1.00

Show Bookmark Show Bookmark 1.00

Add Bookmark Add Bookmark 1.00

Create Account Create new account 0.66

Search by Tag Search 0.33

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [41] of [58]

Login to Account Login 0.33

List Bookmarks null 0.00

Update Bookmark null 0.00

Update Account null 0.00

Add Tag null 0.00

As shown in this Table, the matching between the actors indicates that the requirements
engineer (of the second diagram) could consider adding a guest user. Additionally, the use
cases for listing and updating bookmarks, for updating account information and for adding
tags to bookmarks could be added to the requirements of the (second) system.

5.3 Detecting Similar Activity Diagrams

5.3.1 Parsing Activity Diagrams

Activity diagrams depict the flow of actions in dynamic scenarios of software projects. As
such, we required a representation that would take the flows of the diagram into account.
An example activity diagram of project Restmarks is shown in Figure 5.3.

Figure 5.3 Example activity diagram for project Restmarks

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [42] of [58]

As shown in this diagram, activity diagrams are mostly sequences of activities and
conditions. In the case of conditions (or forks and joins), the flow of the diagram is split, thus
one can view an activity diagram as a set of sequences.

In the context of our work, we analyze each activity diagram into a set of sequences. Each
sequence denotes a set of activities required to traverse from the start node to the end node
of the diagram. For instance, the diagram of Figure 5.3 spawns the following set of
sequences:

• StartNode > Logged In? > Login to account > Provide
bookmark URL > Create Bookmark > Add tag > User wants to
add tag? > EndNode

• StartNode > Logged In? > Provide bookmark URL > Create
Bookmark > Add tag > User wants to add tag? > EndNode

• StartNode > Logged In? > Provide bookmark URL > Create
Bookmark > Add tag > User wants to add tag? > Provide tag
text > Add tag to bookmark > EndNode

• StartNode > Logged In? > Login to account > Provide
bookmark URL > Create Bookmark > Add tag > User wants to
add tag? > Provide tag text > Add tag to bookmark >
EndNode

Thus, given these sequences, the problem is reduced to finding the most similar ones.

5.3.2 Matching Activity Diagrams

Upon having parsed the activity diagrams and having extracted the sequences for each one,
in this subsection we present a matching scheme for these sequences. Thus, the similarity
between two diagrams is the similarity between the sets of their sequences. The similarity
between two sets of sequences is given by the combination between all the matched
sequences with the highest score. Thus for example, given two sets
{ }[, ,], [, , ,], [, , ,]a b e a b d e a b c e and { }[, ,], [, ,]a b e a c e , the best possible combination is

() () (){ }[, ,], [, ,] , [, , ,], [, ,] , [, , ,],a b e a b e a b c e a c e a b d e null .

The similarity between two sequences is based on their Longest Common Subsequence (LCS)
[45]. Given two sequences X and Y , their LCS is defined as the longest subsequence of
which the elements are not necessarily consecutive that is common to both sequences. For
example, given the sequences [, , , ,]X a b d e g= and [, , ,]Y a b e h= , their LCS is

(,) [, ,]LCS X Y a b e= . The score between two sequences is defined using their LCS as:

 () (),
, 2

LCS X Y
sim X Y

X Y
= ⋅

+
 (5.2)

The above equation ensures that the score is normalized in the range [0,1] . Finally, in
contrast with the matching of actors or use cases, we set a threshold t for the string
similarity metric to form a binary decision denoting whether two strings are similar. If the
similarity score of the two compared strings is larger than the threshold, then the two strings
are considered similar. We set t to 0.5.

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [43] of [58]

5.3.3 Example

In this subsection we provide an example output of our system for two UML activity
diagrams. For this example, we depict the matching between the diagram of Figure 5.3 and
the diagram of Figure 5.4.

Figure 5.4 Example activity diagram for matching with the one of Figure 5.3

The matching score between the two diagrams is 0.387. Our system also returns the
matching between the two diagrams, shown in Table 5.2.

Table 5.2 Matching between the diagrams of Figure 5.3 and Figure 5.4

Diagram 1 Diagram 2 Score

StartNode > Logged In? > Provide
bookmark URL > Create Bookmark >
Add tag > User wants to add tag? >
EndNode

StartNode > Logged In? > Provide
URL > Create Bookmark > EndNode 0.833

StartNode > Logged In? > Login to
account > Provide bookmark URL >
Create Bookmark > Add tag > User
wants to add tag? > EndNode

StartNode > Logged In? > Login >
Provide URL > Create Bookmark >
EndNode

0.714

StartNode > Logged In? > Provide
bookmark URL > Create Bookmark >

null 0.000

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [44] of [58]

Add tag > User wants to add tag? >
Provide tag text > Add tag to
bookmark > EndNode

StartNode > Logged In? > Login to
account > Provide bookmark URL >
Create Bookmark > Add tag > User
wants to add tag? > Provide tag text
> Add tag to bookmark > EndNode

null 0.000

As shown in this Table, the matching between the sequences indicates that the
requirements engineer (of the second diagram) could consider adding a new flow that would
include the possibility that the user would like to add a tag to his/her newly created
bookmark.

5.4 Comparison with the Current State-of-the-Art

As noted in Sections 2.4 and 2.5, although current literature on UML diagrams is broad,
there is a common methodology that involves extracting models from UML diagrams and
mining these models using a variety of methods.

Various types of methods have been developed for computing the similarity of UML
diagrams, including Information Retrieval techniques [25], [26], Graph based methods [27]–
[34], and even ontology based, i.e. semantics enabled, methods [35]–[37]. However, these
methods are usually too generic to conform to the special characteristics of UML diagrams.
For instance, the lexical approach of Information Retrieval techniques [25], [26] is not
effective for diagrams that incorporate structure or flow information. Graph based methods
[27]–[34], on the other hand, can be effective for certain types of structured diagrams (e.g.
class diagrams), however, as noted also by Kelter et al. [31], these methods do not exploit
the semantics of the models, since they only employ arbitrary graph similarity metrics.
Finally, in cases where domain specific information is limited, ontology based methods [35]–
[37] cannot be applied.

An interesting alternative to the aforementioned approaches involves considering UML
models as ordered trees. Differencing ordered trees that are derived from structured
representations, such as XML documents, is a widely known problem, for which several
algorithms have been developed [32], [33]. In the case of UML diagrams, the problem lies in
defining and populating the underlying data model that holds the elements of the diagrams.
Designing the data model can be crucial to the overall effectiveness of the similarity
matching algorithm.

Upon having designed two difference algorithms, in Sections 5.2 and 5.3, for Use Case and
Activity diagrams respectively, in this Section we compare them with a widely known
approach in the area of difference algorithms for UML models, defined in [31]. The work in
[31] is part of the FUJABA Project [47], an open source CASE tool that is meant to support
developers in model-based software engineering and re-engineering tasks. In [31], the
authors define a data model that is generic enough to support several types of UML
diagrams (and even non-UML models, such as generic XML documents).

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [45] of [58]

This approach was selected for a number of reasons. At first, as an ordered tree approach, it
offers a solid middle ground between unstructured (e.g. text) and heavily structured (i.e.
graph) methods. Given also the current state-of-the-practice, ordered tree approaches are
extensively used for tree-like structures in several tools (including e.g. Eclipse matching on
xml or ecore files). In addition, it employs a complete data model which includes all diagram
(or model) information as our algorithms do. In specific, the underlying data model supports
different types of models, including Use Case and Activity diagrams, and allows the
application of different similarity measures for string or structural elements. The rest of this
subsection presents the proposed data model of [31] and illustrates the related aspects to
our methodology.

The proposed data model is shown in Figure 5.5.

Figure 5.5 Data model of the difference algorithm, as shown in [31]

As shown in Figure 5.5, the data model consists of the following elements: a Document, a set
of Elements, each one with its type (ElementType), a set of Attributes for each Element, and
a set of References between elements. Kelter et al. [31] focus on UML Class diagrams, where
examples of Elements include classes, parameters, etc. Note also that the types of the
Elements have hierarchy, which is quite optimal for class diagrams since they are designed
with a notion of hierarchy; e.g. packages include classes, classes include methods, etc.

The procedure of finding the similarity between two diagrams is two-step. The first step
includes the instantiation of the model of Figure 5.5 for each diagram. After that, the two
instantiated models are compared against each other using a simple top-down algorithm.
The comparison between strings is performed using the LCS algorithm [45], which is an
effective distance metric that however does not include any semantics.

Although the data model of Figure 5.5 is mainly oriented towards class diagrams, it is
applicable also to several different types of UML diagrams, including Use Case and Activity

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [46] of [58]

diagrams. In the following subsections, we illustrate how the data model is applied to these
types of diagrams. In specific, we assess our algorithms against three implementations of the
data model and string metrics defined in the work of Kelter et al. [31].

For Use Case diagrams, the data model described by Kelter et al. [31] is actually the same as
our data model (see Section 5.2). As a result, the assessment, illustrated in Section 5.4.1, is
oriented towards the semantic string similarity metrics that we have developed.

For Activity Diagrams, the data model described by Kelter et al. [31] differs significantly from
our data model (see Section 5.3). As a result, we implement a higher order comparison, to
illustrate the different characteristics of the two data models, in Section 5.4.2.

The two approaches are thereafter referred to as the S-CASE approach and the FUJABA
approach, which are the projects that they originated from.

5.4.1 Assessing the Matching of Use Case Diagrams

In the case of Use Case Diagrams the data model described in Figure 5.5 is quite simplified.
In specific, the class/type instantiation of the model is shown in Table 5.3.

Table 5.3 Type instantiation of the data model shown in Figure 5.5 for Use Case diagrams

Meta-Class Class Instantiation

Document Use Case diagram

Element (with ElementType) Use Case or Actor

Reference includes, extends, associations and
generalizations

Attribute -

Use Case diagrams do not usually entail an order for the elements, since they are static
representations of requirements. As a result, the data model is not fully exploited to result in
an ordered tree, and is reduced to a set of elements (and a set of references). Therefore, the
two data models, the one by Kelter et al. [31] and our own, described in this Section and
Section 5.2 respectively, are equivalent. Upon applying the data model of Kelter et al. [31]
using the LCS metric for the similarity between strings (and a threshold set to 0.5 as in our
methodology), we compare the outputs of the two models.

We executed the algorithm for the two Use Case diagrams of Figure 5.1 and Figure 5.2. The
result of the method is shown in Table 5.4.

Table 5.4 Matching between the diagrams of Figure 5.1 and Figure 5.2, using the FUJABA approach

Diagram 1 Diagram 2 Score

User User 1.00

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [47] of [58]

Registered User Registered User 1.00

Guest User null 0.00

Delete Bookmark Delete Bookmark 1.00

Show Bookmark Show Bookmark 1.00

Add Bookmark Add Bookmark 1.00

Create Account Create new account 0.81

Search by Tag Search 0.63

Login to Account Login 0.48

List Bookmarks null 0.00

Update Bookmark null 0.00

Update Account null 0.00

Add Tag null 0.00

As shown in this Table and in comparison with the matching shown in Table 5.1, the two
methods have very similar results. This is expected since the two data models are almost
identical, while the semantic characteristics of our algorithm are not shown in this scenario.

A more semantic-oriented scenario can be designed by modifying the names of the use
cases for the two diagrams. In specific, for a more complex scenario, we modify the Use Case
diagram of Figure 5.2, so that it now contains the use cases “Retrieve Bookmark” and
“Remove Bookmark” in the place of “Show Bookmark” and “Delete Bookmark” respectively.
The new results for the two methods are shown in Table 5.5.

Table 5.5 Matching between the diagrams of Figure 5.1 and Figure 5.2 (modified so that “Show Bookmark”

and “Delete Bookmark” are replaced with “Retrieve Bookmark” and “Remove Bookmark” respectively),
using the S-CASE approach and the FUJABA approach

 S-CASE FUJABA

Diagram 1 Diagram 2 Score Diagram 2 Score

User User 1.00 User 1.00

Registered User Registered User 1.00 Registered User 1.00

Guest User null 0.00 null 0.00

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [48] of [58]

Delete Bookmark Remove Bookmark 0.86 Retrieve Bookmark 0.75

Show Bookmark Retrieve Bookmark 0.5 Remove Bookmark 0.71

Add Bookmark Add Bookmark 1.00 Add Bookmark 1.00

Create Account Create new account 0.66 Create new account 0.81

Search by Tag Search 0.33 Search 0.63

Login to Account Login 0.33 Login 0.48

List Bookmarks null 0.00 null 0.00

Update Bookmark null 0.00 null 0.00

Update Account null 0.00 null 0.00

Add Tag null 0.00 null 0.00

As shown in this Table, the semantic string similarity algorithm outperforms the simple LCS
method. For instance, the semantic algorithm successfully matches the “Remove Bookmark”
use case to the “Delete Bookmark” use case, and the matching is also given a relatively high
score. On the other hand, the LCS matches “Remove Bookmark” to the “Show Bookmark”
and the “Delete Bookmark” use case is matched to “Show Bookmark”. Although in terms of
string distance similarity this matching is reasonable, in terms of semantics is certainly not
effective.

5.4.2 Assessing the Matching of Activity Diagrams

In the case of Activity Diagrams the data model described in Figure 5.5 is instantiated as
shown in Table 5.6.

Table 5.6 Type instantiation of the data model shown in Figure 5.5 for Activity diagrams

Meta-Class Class Instantiation

Document Activity diagram

Element (with ElementType) Activity, Initial Node, Final Node,
Decision Node

Reference Edge

Attribute -

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [49] of [58]

Given that Activity diagrams do not impose hierarchy to the elements, the data model
described by Kelter et al. [31] is not fully exploited as is the case for other types of diagrams,
such as class diagrams. Activity diagrams represent the dynamic aspects of a software
project, focusing for example on data flow, sequences of user or system actions (or both). As
a result, the analysis performed on Activity diagrams is usually focused on the flow of
actions, rather than the structure of the diagram elements, thus super-elements and sub-
elements are not applicable in this model.

Furthermore, note that Activity diagrams (and Use Case diagrams) concern the requirements
elicitation phase of the software project. Consequently, these diagrams usually do not
include detailed attributes, as Class diagrams do. For instance, as noted by Kelter et al. [31],
an example attribute of a class is its abstractness; similar attributes are not applicable to
Activity diagrams.

As in Use Case diagrams, the FUJABA approach employs the LCS method for computing the
similarity between strings. In this Section, however, the focus is to assess the differences
between the data models, since the difference between the similarity techniques has been
assessed in Section 5.4.1. Thus, we compare only the two data models, by manually selecting
the matched strings for the two models.

Given the two Activity diagrams of Figure 5.3 and Figure 5.4, the result of our method is
shown in Table 5.2, while the result of the FUJABA approach is shown in Table 5.7.

Table 5.7 Matching between the diagrams of Figure 5.3 and Figure 5.4, using the FUJABA approach

Diagram 1 Diagram 2 Score

Create Bookmark Create Bookmark 1.00

Logged In? Logged In? 1.00

StartNode StartNode 0.00

EndNode EndNode 1.00

Provide bookmark URL Provide URL 0.71

Login to account Login 0.48

Add tag null 0.00

User wants to add tag? null 0.00

Provide tag text null 0.00

Add tag to bookmark null 0.00

Comparing Table 5.2 to Table 5.7, one may draw useful conclusions about the advantages
and the disadvantages of each model. At first, the representation shown in Table 5.2 is a

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [50] of [58]

better fit for the action flow of Activity diagrams. The abstraction employed by this model
presents a higher order result to the user, indicating e.g. that he/she maybe should add a
new flow of actions (i.e. a new functionality) to the original plan. Given the newly added flow
of actions, the user is able to understand the purpose of each individual activity. The data
model of Table 5.7 is highly useful for visualizing the output, since it isolates better the
nodes (activities or conditions) that have to be added. This is expected since, as noted also
by Kelter et al. [31], the visualization of the differences lies within the main scope of the
design of this model. Thus, in structural (or static) diagrams, this data model can achieve
several goals, including visualization or even diagram versioning. However, in dynamic types
of diagrams, such as sequence or activity diagrams, our data model is more effective on
entailing higher order semantics and presenting them to the requirements engineer.

5.5 Experimental Evaluation

Upon illustrating the differences between our methodology and the current state-of-the-art,
in this Section we further assess the effectiveness of our approach using a dataset of UML
diagrams. The dataset originates from the one used in Deliverable D3.3.2 of S-CASE and
includes 65 Use Case diagrams and 72 Activity diagrams. These diagrams belong to several
software projects with different semantic characteristics. In the context of our evaluation,
we may classify each diagram in one of the following categories:

• Diagrams including health and mobility terms, which originate mostly from the
requirements of health systems

• Diagrams with traffic and transportation terms, including projects that may relate to
routing, traffic and transportation analysis, etc.

• Diagrams that are relevant to social networks and generally p2p communications,
which refer mostly on social network and communication projects

• Diagrams that refer to the use of services, including mostly common processes for
creating/modifying accounts, issuing requests for products, etc.

• Business process diagrams, which refer to the specifics of running a business (e.g.
diagrams that explain the procedure of creating and internally reviewing reports
etc.), and may originate from different projects

• The rest of the diagrams, including most of the diagrams created specifically for S-
CASE

Note that the above categorization is mostly semantic; however structural equivalence
between diagrams of the same category is also expected, since most use cases and action
flows are common in these types of systems.

Upon constructing all the possible pairs of use case and activity diagrams, which are 2080
and 2556 pairs respectively, we mark each pair of diagrams as relevant or non-relevant
according to their categories. In specific, any pair consisting of diagrams of the same
category is considered relevant, while and all other pairs of diagrams are regarded as non-
relevant.

In the following subsections, we present the results of our evaluation on this dataset, upon
executing our method against the method of Kelter et al. [31]. For each method we find the

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [51] of [58]

average similarity value for all diagram pairs, and consider as relevant the pairs that surpass
this value, while all other pairs are considered as irrelevant.

5.5.1 Evaluating the Matching of Use Case Diagrams

The execution of the two methods on Use Case diagrams provides an interesting
assessment, given that the S-CASE approach and the FUJABA approach are structurally
similar, as discussed in section 5.4. Hence, the results of the evaluation on Use Case
diagrams are expected to determine the effectiveness of the semantic methodology of our
approach. The results of executing the two approaches on the pairs of use case diagrams are
shown in Table 5.8 and Table 5.9, for S-CASE and FUJABA respectively.

Table 5.8 Classification results of S-CASE for the Use Case diagrams of the dataset

Class Label Precision Recall F-Measure

Irrelevant Diagram Pairs 0.806 0.633 0.709

Relevant Diagrams Pairs 0.348 0.562 0.430

Average 0.688 0.614 0.637

Table 5.9 Classification results of FUJABA for the Use Case diagrams of the dataset

Class Label Precision Recall F-Measure

Irrelevant Diagram Pairs 0.786 0.561 0.655

Relevant Diagrams Pairs 0.308 0.561 0.397

Average 0.662 0.561 0.588

As shown in these tables, the S-CASE approach outperforms the FUJABA approach when it
comes down to finding relevant diagram pairs. In specific, both systems have similar recall
for relevant pairs; however our approach provides more accurate results, since its precision
is clearly higher. Furthermore, non-relevant pairs are successfully isolated by our method,
given that the values of precision and recall for this class label are also higher than the values
of the FUJABA approach. The results are also visualized in Figure 5.6, where it is clear that
the S-CASE approach outperforms the FUJABA approach for the metrics of precision, recall,
and F-measure.

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [52] of [58]

Figure 5.6 Evaluation metrics for the Use Case diagrams of the dataset

5.5.2 Evaluating the Matching of Activity Diagrams

Concerning Activity diagrams, the S-CASE approach and the FUJABA approach both have
their pros and cons, as discussed in section 5.4. In this section, our evaluation is focused on
the structural aspects of the diagrams. The results of our evaluation on the Activity diagrams
of the dataset are summarized in Table 5.10 and Table 5.11, for the S-CASE approach and the
FUJABA approach respectively.

Table 5.10 Classification results of S-CASE for the Activity diagrams of the dataset

Class Label Precision Recall F-Measure

Irrelevant Diagram Pairs 0.698 0.619 0.656

Relevant Diagrams Pairs 0.346 0.430 0.384

Average 0.586 0.559 0.569

Table 5.11 Classification results of FUJABA for the Activity diagrams of the dataset

Class Label Precision Recall F-Measure

Irrelevant Diagram Pairs 0.690 0.515 0.590

Relevant Diagrams Pairs 0.329 0.507 0.399

Average 0.575 0.513 0.529

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [53] of [58]

As shown in these tables, S-CASE approach outperforms the FUJABA approach in terms of
average precision, recall and F-measure. However, the results for each class label are
diverse. In specific, the FUJABA approach seems to effectively detect several similar activity
diagrams, given that the recall of relevant diagram pairs is quite high. However, the precision
for this class label is lower than that of S-CASE. This is actually expected, since the structural
model of FUJABA is based on elements with connections while the model of S-CASE is based
on action flows. Thus, FUJABA issues higher similarity scores for certain diagrams even if
they are not equivalent in terms of the flow of actions. This results in higher false positive
rates, which is clear not only from the low precision of relevant diagram pairs, but also the
relatively low recall of the irrelevant diagram pairs.

The S-CASE approach, on the other hand, has higher metric values on the class label of
irrelevant diagram pairs, indicating that its false positives are reduced. Thus, the S-CASE
approach has a clearly higher F-measure value for irrelevant diagram pairs, while the F-
measure for the two approaches is similar.

The results for the averaged values of the metrics for the two approaches are also visualized
in Figure 5.7, where it is clear that S-CASE outperforms FUJABA.

Figure 5.7 Evaluation metrics for the Activity diagrams of the dataset

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [54] of [58]

6 Conclusions

The work discussed in this deliverable summarizes our progress on Task 2.4 of WP2 of S-
CASE, which comprises applying mining techniques in three fields of study: functional
requirements, source code, and UML diagrams. Although several research efforts have
focused on these areas, most of these efforts do not conform to the special characteristics of
our scenario. In specific, requirements elicitation recommendation systems are oriented
towards high-level requirement representations and/or are dependent on domain specific
knowledge. Source code mining techniques are not adapted to RESTful systems, while the
area of UML model mining techniques can be greatly improved by the use of semantics and
structural information.

Concerning functional requirements elicitation, our system employs association rule mining
to extract useful rules from functional requirements, and uses the rules to create
recommendations based on the project under development. As we have shown in Section 4,
our system can provide a set of recommendations out of which approximately 60% of them
will be rational. Thus, given that the requirements engineer (or a stakeholder) has compiled
a set of requirements, he/she could effectively check whether he/she has omitted any
important ones.

In the area of source code component-reuse systems, we have proposed a methodology that
involves using the model of RESTful resources and employing CSE technology to recommend
example algorithms that can be used to aid the implementation of algorithmic resources. As
shown in Section 5, our methodology is effective for finding potential algorithms that
conform to the RESTful resource model.

Finally, our work on UML diagram mining involves using structural representations and
semantics to find similar diagrams. The use of distance metrics between sets and semantics
for use case diagram matching ensures that the similarity between diagrams is computed in
a meaningful manner. Additionally, since activity diagrams are represented as sequences of
action flows, the dynamic features of the diagrams are taken into account in order to
provide effective recommendations of similar diagrams.

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [55] of [58]

References

[1] Ian Sommerville. Software Engineering. Addison-Wesley, Harlow, England, 9th
edition, 2010.

[2] Dean Leffingwell. Calculating your return on investment from more effective
requirements management. American Programmer, 10(4):13–16, 1997.

[3] Alexander Felfernig, Monika Schubert, Monika Mandl, Francesco Ricci, and Walid
Maalej. Recommendation and decision technologies for requirements engineering. In
Proceedings of the 2nd International Workshop on Recommendation Systems for
Software Engineering, RSSE ’10, pages 11–15, New York, NY, USA, 2010. ACM.

[4] Gunther Ruhe and Moshood Omolade Saliu. The art and science of software release
planning. IEEE Softw., 22(6):47–53, November 2005.

[5] William Frakes, Ruben Prieto-Diaz, and Christopher Fox. Dare: Domain analysis and
reuse environment. Ann. Softw. Eng., 5:125–141, January 1998.

[6] Manish Kumar, Nirav Ajmeri, and Smita Ghaisas. Towards knowledge assisted agile
requirements evolution. In Proceedings of the 2nd International Workshop on
Recommendation Systems for Software Engineering, RSSE ’10, pages 16–20, New
York, NY, USA, 2010. ACM.

[7] Smita Ghaisas and Nirav Ajmeri. Knowledge-assisted ontology-based requirements
evolution. In Managing Requirements Knowledge, pages 143–167. Springer Berlin
Heidelberg, 2013.

[8] Kun Chen, Wei Zhang, Haiyan Zhao, and Hong Mei. An approach to constructing
feature models based on requirements clustering. In Proceedings of the 13th IEEE
International Conference on Requirements Engineering, RE ’05, pages 31–40,
Washington, DC, USA, 2005. IEEE Computer Society.

[9] Vander Alves, Christa Schwanninger, Luciano Barbosa, Awais Rashid, Peter Sawyer,
Paul Rayson, Christoph Pohl, and Andreas Rummler. An exploratory study of
information retrieval techniques in domain analysis. In Proceedings of the 2008 12th
International Software Product Line Conference, SPLC ’08, pages 67–76, Washington,
DC, USA, 2008. IEEE Computer Society.

[10] Horatiu Dumitru, Marek Gibiec, Negar Hariri, Jane Cleland-Huang, Bamshad
Mobasher, Carlos Castro-Herrera, and Mehdi Mirakhorli. Ondemand feature
recommendations derived from mining public product descriptions. In Proceedings of
the 33rd International Conference on Software Engineering, ICSE ’11, pages 181–190,
New York, NY, USA, 2011. ACM.

[11] Jose Romero-Mariona, Hadar Ziv, and Debra J. Richardson. Srrs: A recommendation
system for security requirements. In Proceedings of the 2008 International Workshop
on Recommendation Systems for Software Engineering, RSSE ’08, pages 50–52, New
York, NY, USA, 2008. ACM.

[12] Soo Ling Lim and Anthony Finkelstein. Stakerare: Using social networks and
collaborative filtering for large-scale requirements elicitation. IEEE Trans. Softw. Eng.,
38(3):707–735, May 2012.

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [56] of [58]

[13] Carlos Castro-Herrera, Chuan Duan, Jane Cleland-Huang, and Bamshad Mobasher.
Using data mining and recommender systems to facilitate large-scale, open, and
inclusive requirements elicitation processes. In Proceedings of the 2008 16th IEEE
International Requirements Engineering Conference, RE ’08, pages 165–168,
Washington, DC, USA, 2008. IEEE Computer Society.

[14] Bamshad Mobasher and Jane Cleland-Huang. Recommender systems in requirements
engineering. The AI magazine, 32(3):81–89, 2011.

[15] Alexander Felfernig, Monika Schubert, Monika Mandl, and P. Ghirardini. Diagnosing
inconsistent requirements preferences in distributed software projects. In Software
Engineering 2010 - Workshopband, volume 160 of LNI, pages 495–502. GI, 2010.

[16] Jane Cleland-Huang, Horatiu Dumitru, Chuan Duan, and Carlos Castro- Herrera.
Automated support for managing feature requests in open forums. Commun. ACM,
52(10):68–74, October 2009.

[17] Soo Ling Lim, Daniele Quercia, and Anthony Finkelstein. Stakenet: Using social
networks to analyse the stakeholders of large-scale software projects. In Proceedings
of the 32nd ACM/IEEE International Conference on Software Engineering - Volume 1,
ICSE ’10, pages 295– 304, New York, NY, USA, 2010. ACM.

[18] Leonard Richardson and Sam Ruby. Restful Web Services. O’Reilly, first edition, 2007.

[19] Martin P. Robillard, Robert J. Walker, and Thomas Zimmermann. Recommendation
systems for software engineering. IEEE Softw., 27(4):80–86, July 2010.

[20] Naiyana Sahavechaphan and Kajal Claypool. XSnippet: Mining for Sample Code.
SIGPLAN Not., 41(10):413–430, October 2006.

[21] Suresh Thummalapenta and Tao Xie. Parseweb: A Programmer Assistant for Reusing
Open Source Code on the Web. In Proceedings of the 22nd IEEE/ACM International
Conference on Automated Software Engineering, ASE ’07, pages 204–213, New York,
NY, USA, 2007. ACM.

 [22] Tao Xie and Jian Pei. MAPO: Mining API Usages from Open Source Repositories. In
Proceedings of the 2006 International Workshop on Mining Software Repositories,
MSR ’06, pages 54–57, New York, NY, USA, 2006. ACM.

[23] Oliver Hummel, Werner Janjic, and Colin Atkinson. Code Conjurer: Pulling Reusable
Software out of Thin Air. IEEE Softw., 25(5):45–52, September 2008.

[24] Otávio Augusto Lazzarini Lemos, Sushil Krishna Bajracharya, and Joel Ossher.
CodeGenie: A Tool for Test-driven Source Code Search. In Companion to the 22nd
ACM SIGPLAN Conference on Object-oriented Programming Systems and Applications
Companion, OOPSLA ’07, pages 917–918, New York, NY, USA, 2007. ACM.

[25] Thomas A. Alspaugh, Annie I. Antón, Tiffany Barnes, and Bradford W. Mott. An
integrated scenario management strategy. In Proceedings of the 4th IEEE
International Symposium on Requirements Engineering, RE ’99, pages 142–149,
Washington, DC, USA, 1999. IEEE Computer Society.

[26] Maurits C. Blok and Jacob L. Cybulski. Reusing uml specifications in a constrained
application domain. In Proceedings of the Fifth Asia Pacific Software Engineering
Conference, APSEC ’98, page 196, Washington, DC, USA, 1998. IEEE Computer Society.

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [57] of [58]

[27] Han G. Woo and William N. Robinson. Reuse of scenario specifications using an
automated relational learner: A lightweight approach. In Proceedings of the 10th
Anniversary IEEE Joint International Conference on Requirements Engineering, RE ’02,
pages 173–180, Washington, DC, USA, 2002. IEEE Computer Society.

[28] William N. Robinson and Han G. Woo. Finding reusable uml sequence diagrams
automatically. IEEE Softw., 21(5):60–67, September 2004.

[29] Wei-Jin Park and Doo-Hwan Bae. A two-stage framework for uml specification
matching. Inf. Softw. Technol., 53(3):230–244, March 2011.

[30] Hamza Onoruoiza Salami and Moataz Ahmed. Class diagram retrieval using genetic
algorithm. In Proceedings of the 2013 12th International Conference on Machine
Learning and Applications - Volume 02, ICMLA ’13, pages 96–101, Washington, DC,
USA, 2013. IEEE Computer Society.

[31] Udo Kelter, Jürgen Wehren, and Jörg Niere. A Generic Difference Algorithm for UML
Models. Software Engineering 64.105-116 (2005): 4-9.

[32] Sudarshan S. Chawathe, Anand Rajaraman, Hector Garcia-Molina, and Jennifer
Widom. Change detection in hierarchically structured information. ACM SIGMOD
Record. Vol. 25. No. 2. ACM, 1996.

[33] Yuan Wang, David J. DeWitt, and Jin-Yi Cai. X-Diff: An effective change detection
algorithm for XML documents. In Proceedings of the 2003 19th International
Conference on Data Engineering. IEEE, 2003.

[34] Daniel Bildhauer, Tassilo Horn, and Jurgen Ebert. Similarity-driven software reuse. In
Proceedings of the 2009 ICSE Workshop on Comparison and Versioning of Software
Models, CVSM ’09, pages 31–36, Washington, DC, USA, 2009. IEEE Computer Society.

[35] Paulo Gomes, Pedro Gandola, and Joel Cordeiro. Helping software engineers reusing
uml class diagrams. In Proceedings of the 7th International Conference on Case-Based
Reasoning: Case-Based Reasoning Research and Development, ICCBR ’07, pages 449–
462, Berlin, Heidelberg, 2007. Springer-Verlag.

[36] Karina Robles, Anabel Fraga, Jorge Morato, and Juan Llorens. Towards an ontology-
based retrieval of uml class diagrams. Inf. Softw. Technol., 54(1):72–86, January 2012.

[37] Belén Bonilla-Morales, Sérgio Crespo, and Clifton Clunie. Reuse of use cases diagrams:
An approach based on ontologies and semantic web technologies. Int. J. Comput. Sci.,
9(1):24–29, 2012.

[38] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining association rules
between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’93, pages 207–216, New
York, NY, USA, 1993. ACM.

[39] George A. Miller. Wordnet: A lexical database for English. Commun. ACM, 38(11):39–
41, November 1995.

[40] Mark Finlayson. Java libraries for accessing the princeton wordnet: Comparison and
evaluation. In Heili Orav, Christiane Fellbaum, and Piek Vossen, editors, Proceedings
of the Seventh Global Wordnet Conference, pages 78–85, Tartu, Estonia, 2014.

FP7-ICT-610717 D2.4 Mining models for SE-related associations

Deliverable Version 1.4 page [58] of [58]

[41] Ted Pedersen, Siddharth Patwardhan, and Jason Michelizzi. Wordnet:: similarity:
Measuring the relatedness of concepts. In Demonstration Papers at HLT-NAACL 2004,
HLT-NAACL–Demonstrations ’04, pages 38–41, Stroudsburg, PA, USA, 2004.
Association for Computational Linguistics.

[42] Dekang Lin. An information-theoretic definition of similarity. In Proceedings of the
Fifteenth International Conference on Machine Learning, ICML ’98, pages 296–304,
San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

[43] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association
rules in large databases. In Proceedings of the 20th International Conference on Very
Large Data Bases, VLDB ’94, pages 487–499, San Francisco, CA, USA, 1994. Morgan
Kaufmann Publishers Inc.

[44] RESTAPPS, S-CASE Consortium, 2014.

[45] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Third Edition, pages 390–396. The MIT Press, 3rd edition,
2009.

[46] Papyrus, Eclipse UML tool, 2014, available online: http://eclipse.org/papyrus/

[47] Ulrich Nickel, Jörg Niere, and Albert Zündorf. 2000. The FUJABA environment. In
Proceedings of the 22nd international conference on Software engineering (ICSE '00).
ACM, New York, NY, USA, 742-745.

	1 Introduction
	1.1 WP2 Objectives
	1.2 Scope of Task 2.4
	1.3 Structure of this Deliverable
	1.4 Summary of Changes

	2 State-of-the-art Analysis
	2.1 Overview
	2.2 Background on Mining Functional Requirements
	2.3 Background on Source Code Mining
	2.4 Background on Mining UML Models
	2.5 Task Contributions and Progress beyond the State-of-the-art

	3 Mining Functional Requirements
	3.1 Overview
	3.2 A Recommendation System for Functional Requirements
	3.2.1 Annotating Requirements
	3.2.2 Semantically Relating Terms of Requirements
	3.2.3 Extracting Association Rules from Requirements
	3.2.4 Recommending Functional Requirements

	3.3 Evaluation
	3.3.1 Dataset
	3.3.2 An Example of Recommending Requirements
	3.3.3 Experimental Results

	4 Source Code Mining
	4.1 Overview
	4.2 Recommending algorithms for RESTful resources
	4.2.1 Downloader
	4.2.2 Parser
	4.2.3 Matcher

	4.3 Case Study
	4.3.1 Algorithm for Wrapping Text
	4.3.2 Algorithm for Highlighting a Word
	4.3.3 Algorithm for Finding a Word

	5 Mining UML Models
	5.1 Overview
	5.2 Detecting Similar Use Case Diagrams
	5.2.1 Parsing Use Case Diagrams
	5.2.2 Matching Use Case Diagrams
	5.2.3 Example

	5.3 Detecting Similar Activity Diagrams
	5.3.1 Parsing Activity Diagrams
	5.3.2 Matching Activity Diagrams
	5.3.3 Example

	5.4 Comparison with the Current State-of-the-Art
	5.4.1 Assessing the Matching of Use Case Diagrams
	5.4.2 Assessing the Matching of Activity Diagrams

	5.5 Experimental Evaluation
	5.5.1 Evaluating the Matching of Use Case Diagrams
	5.5.2 Evaluating the Matching of Activity Diagrams

	6 Conclusions
	References

